作为一名人民教师,课堂教学是我们的任务之一,借助教学反思可以快速提升我们的教学能力,优秀的教学反思都具备一些什么特点呢?下面是小编帮大家整理的《方程的意义》教学反思,仅供参考,希望能够帮助到大家。
《方程的意义》教学反思1《方程的意义》这是一块崭新的知识点,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学,但理解起来有一定的难度。数学教学过程,首先应该是一个让学生获得丰富情感体验的过程。要让学生乐学、好学,让学生在教学过程中获得积极的情感体验,下面就结合我所执教的《方程的意义》这节课,谈谈我在教学中的做法和看法。
回顾我的教学,我认为有如下几个特点。
一、设置情景引导,促进学生的自主学习
在执教,《方程的意义》一课时通过天平的演示: 认识天平,同学们说天平的作用、用法。在这个环节要充分发挥低视的动手能力,但要注意对学困生的引导,在这个方面应该给学困生更多的机会去接触天平,起码让他们对天平建立起一个初步的认识。
二、合作交流,总结概括
通过对天平的观察得出等式的概念,接着应让学生自己独立思考。通过比较等式与方程,以及不等式与方程的不同,得出方程的概念,体现学生自主学习的能力,而不应该替学生很快的说出答案,在将出方程的概念后,应该让学生通过变式训练明白不仅X可以表示未知数,其他的字母都可表示未知数。在此教学过程中,教师应充当一个导游的角色,站在知识的岔路口,启发诱导学生发现知识,充分发挥学生的学习潜能,将有一定难度的问题放到小组中,采用合作交流的方式加以解决,逐步的引导学生对问题的思考和解决向纵深发展,有利于培养学生的倾听习惯和合作意识。
三、回归生活,体会方程
在建立方程的意义以后,设计了根据情境图写出相应的方程,并在最后引入生活实例,从中找出不同的方程。这一过程学生在生活实际中寻找等量关系列方程,进一步体会方程的意义,加深了对方程概念的理解,同时也为以后运用方程知识解决实际问题打下基础。
从学生已有的知识储备来看,他们会用含有字母的式子表示数量,大多数学生知道等式并能举例,向学生提供表示天平左右两边平衡的问题情境,大部分学生运用算术方法列式。但是,学生已有的解决数学问题的算术法解题思路对列方程会造成一定的干扰。对于利用天平解决实际问题较感兴趣,但是,要求学生把看到的生活情境转化成用数学语言、用关系时表示时可能存在困难,对于从各种具体情境中寻找发现等量关系并用数学的语言表达则表现出需要老师引导和同伴互助,需要将独立思考与合作交流相结合。
《方程的意义》教学反思2《方程的意义》本课是人教版五年级上册第五单元的起始课,属于概念教学。对于概念的学习来说,如何理解定义是重要的,方程的意义不在于方程概念本身,而是方程更为丰富的内涵。就本节课反思如下:
1.埋新知伏笔
等式的认识是学习方程的一个前概念,因此,在认识方程之前,我先安排了一个关于“等号”意义话题的讨论。出示如:2+3=57+2=4+5,这两个题中“=”分别表示什么意思?2+3=5这个题中“=”表示计算结果,而7+2=4+5表示是一种关系,让学生对等号的认识实现一种转变,从而为建立方程埋下伏笔,也体现了思考问题着眼点的变化。但在实际教学中,由于我临时改变思路,根据课件天平左盘放着20千克和50千克的物体,右盘放着70千克的物体,学生列出算式20+50=70,我就问这个等号表示什么意思?由于这个算式有了天平具体的直观形象,学生一下子过渡到等号表示一种关系。我想让学生体会等号从表示一种过程过渡到表示一种关系,但课后我反思没有必要,以前学生已经知道等号表示一种过程,本节课主要让学生认识到等号还表示一种关系,为建立方程打下基础,所以,当学生已经在天平直观形象中认识到等号表示一种关系,就可以往下进行。所以,这个环节浪费了时间,同时我认识到课前每个环节都要慎思。
2.导概念实质。
新授环节是本节课的核心环节。我让学生以讲故事的形式生动讲解每幅图的意思,让学生经历认识方程的过程,力求让学生在愉悦的氛围里深刻的思考中,体验方程从现实生活中抽象出来。从而列出方程并认识方程。但我认为这还不够,还要对方程的内涵和外延要有更深层次的理解。于是我安排了以下4道习题:
第1题:下面这些式子是方程吗?
X×2-5=100y-2=35()+3=5苹果+50=300
通过这些习题的训练,让学生明白方程中的未知数可以是任何字母,可以是图形,也可以是物体或者画括号等。让学生体会到其实方程在一年级就已经悄悄地来到了我们的身边,和我们已经是老朋友了,只是在一年级我们没有给出它名字,()+3=5就是方程的雏形。
课后我反思这一环节应该增加一些不是方程的习题,如:2X-3>62X+9让学生在各种形式的式子中辨别方程会更好些。
第2题,出示天平图,左盘放着一个160克的苹果和一个重X的梨,右盘放着240克砝码,你能列出方程吗?很多学生列的方程是160+X=240,我就出示240-160=X这个式子是方程吗?让学生在思辨中明晰,它只有方程的形式而没有方程的实质,进一步明白方程的定义中“含有”未知数指的就是未知数要与已知数参加列式运算,从而进一步理解方程的意义。
第3题,出示了天平图,左盘放着250克砝码,右盘放着一个重a克和b克的物体,让学生列方程。通过此题的训练,学生知道了方程中的未知数可以不只是一个,可以是两个或者更多个。方程的内涵和外延逐渐浮出水面。
课后我反思,通过此题的训练,也应该让学生明白不同的数用不同的未知数表示。
第4题,一瓶800克果汁正好倒满5小杯和容量300克的一大杯,现在没有天平还有方程吗?
生1:800=300+5X
生2:800=300+y
师;为了不让别人产生误会,要写上一句话,写清X、y分别表示什么。
这样为以后学习列方程解决问题打下基础,会减少漏写设句的几率。也让学生明白,没有天平要想列出方程,要在已知数与未知数之间建立起等量关系。
本节课我以等式入手建立方程的概念,以判断方程为依托,让学生进一步理解方程的意义,以解决问题为抓手,让学生产生矛盾冲突,深刻体会“含有”未知数的真正含义,从而理解方程的意义,在层层递进的练习中加深对方程意义的理解。整个教学过程为学生提供了丰富的感性材料,使学生在一种思辨的状态中体验到方程是表达等量关系的数学模型,又为学生的后续学习列方程解决实际问题做了很好的铺垫。
《方程的意义》教学反思3《方程的意义》是一节数学概念课,概念教学是一种理论教学,理论性、学术性较强,往往会显得枯燥无味,但同时它又是一种基础教学,是以后学习更深一层知识,解决更多实际问题的知识支撑,因此我们应该重视概念教学的开放性,自主性与概念形成的自然性。而且数学 ……此处隐藏8328个字……手,通过对所列方程的观察,并与一元一次方程类比,自然导出一元二次方程的意义及其相关的一些概念,既渗透了类比的数学思想,又加强了新旧知识间的联系,有助于学生对新知识的理解与接受,降低了知识点的难度,减轻了学生的学习负担。
计过程中,不过于强调形式化的定义,也不要求学生死记硬背,只要能辨认一些概念即可,最后出示的一个实际问题,目的让学生进一步体会一元二次方程学习的重要性及实际价值,同时也为下一节一元二次方程的解法及应用的学习设置悬念、埋下伏笔,激发学生的求知欲望,培养学生自主探究的习惯与能力。
本节课教学,注重知识与实际的联系,让学生认识到学习数学的重要性,注重学生的个性发展,采取自主探究与合作交流的学习方法,让学生经历思考、讨论、合作、交流的过程,使学生始终处于学习的主体地位,培养学生与人交流、与人合作的能力。从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得数学理解的同时,在思维能力、情感、态度与价值观等多方面得到发展.
分层作业中必做题巩固本节课的基本要求,体现了“人人都能获得必要的数学”;选做题密切联系生活,体现“人人学有价值的数学;不同的人在数学上得到不同的发展”,创设了具有实践性、开放性的问题情境,启发学生思考现实生活中可能蕴涵某些数学知识的现象,初步学会“用数学”的意识。通过训练,在日常生活中,学生就会用数学的眼光观察、探究现实世界,发现问题,通过自己的思考解决问题。
《方程的意义》教学反思13《方程的意义》是一节数学概念课,概念教学是一种理论教学,往往会显得枯燥无味,但同时它又是一种基础教学,是以后学习更深一层知识,解决更多实际问题的知识支撑,因此我们应该重视概念教学的开放性,自主性与概念形成的自然性。
一、生活引入,注重体验。
数学课程标准指出:数学教学,要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。
《方程的意义》这节课与学生的生活有密切联系,因此在课始,采用学生生活中常见的跷跷板游戏,让学生感受到类似于天平的“相等”和“不等”。这样在结合天平感受这种关系以及最终体会到方程中“相等”的关系时,学生就会感受水到渠成。
二、自主学习,辨析完善。
因为五年级学生已经进入了高年级,是有一定的学习能力的。所以,认识方程中,我选择了放手让学生进行自学。并给出了一定的自学提纲:(1)是方程,我的例子还有。(2)不是方程(可以举例)。(3)我还知道。这里学生自学时是带着自己例子进行思辨性的自学,所以感觉学生理解的还是比较的透彻的,在交流哪些不是方程时,学生理解了等式、不等式、方程之间的关系:方程一定是等式,等式不一定是方程,不等式一定不是方程等等。
三、结合实际、理解关系。
根据数量之间的关系列出方程也是本节课的重点之一。同时,这点也是后续列方程解决实际问题的一个基础。所以在出示实际问题列出方程时,我总是追问:你是怎么想的?让学生感受到搞清数量之间的关系是正确列出方程的前提条件。
另外,在练习的设计上,增加一些思维的难度和挑战也是锻炼学生数学思维的一个常态化的工作。
当然这节课还存在一些问题,比如对等式的突出得不够,学生“说”的训练不够,应该给学生更多的表述的机会。
《方程的意义》教学反思14在教学设计时,我把“方程的意义”作为教学的重点,方程意义的教学目标定位是,不仅仅是让学生了解方程的概念,能指出哪些是方程;更多思考的是学生对方程后继的学习和发展,注重知识的渗透.
课堂上让学生借助于天平平衡与不平衡的现象列出表示等与不等关系的式子,为进一步认识等式、不等式提供了观察的感性材料,然后引导学生对式子分类,建立等式概念,并举出新的生活实例进行强化.最后引导学生分析、判断,明确方程与等式的联系与区别,深化方程的概念.
本节课从课堂整体来看还可以,有大部分学生的思维还较清晰、会说;可还有部分学生不敢说,或者是不知如何表述,或者是表述的不准确,我想问题的关键是学生的课堂思维过程的训练有待加强,数学课堂也应该重视学生“说”的训练,在说的过程中激活学生的思维,让学生在新课程的指引下学会自主探索,学得主动,学得投入。
《方程的意义》教学反思15本节课的探究交流主要体现在“含有未知数的等式,称为方程”的这一概念获取过程中,在这个过程中我首先是让学生通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用,《方程的意义》教学反思。通过这一系列的观察、思考、分类、归纳突破本课的重难点。在这几个环节中有这样几个特点:
1.用天平创设情境直观形象,有助学生理解式子的意思
等式是一个数学概念。如果离开现实背景出现都是已知数组成的等式,虽然可以通过计算体会相等,但枯躁乏味,学生不会感兴趣。如果离开现实情境出现含有未知数的等式,学生很难体会等式的具体含义。天平是计量物体质量的工具,但它也可以通过平衡或者不平衡判断出两个物体的质量是否相等,天平图创设情境,利用鲜明的直观形象写出表示相等的式子和表示不相等的式子,可以帮助学生理解式子的意思,也充分利用了教材的主题图。
2、对方程的认识从表面趋向本质
(1)在分类比较中认识方程的主要特征。在教学过程中,学生通过观察和操作得到了很多不同的式子,然后让学生把写出的式子进行分类。先让学生独立思考,再在组内交流,讨论思考发现式子的不同,分类概括。有人可能先分成等式和不是等式两类,再把等式分成不含未知数和含有未知数两种情况;有人可能先分成不含未知数和含有未知数两类,再把含有未知数的式子分成等式和不是等式两种情况。尽管分的过程不完全一致,但最后都分出了含有未知数的等式,经过探索和交流,认识方程的特征,归纳出方程的意义。
( 2)要体会方程是一种数学模型。“含有未知数的等式”描述了方程的外部特征,并不是本质特征。方程用等式表示数量关系,它由已知数和未知数共同组成,表达的相等关系是现象、事件中最主要的数量关系。要让学生体会方程的本质特征。在教学过程中,通过观察天平的相等关系(如左盘中是100克的杯子和x克水右盘中是250克砝码,天平平衡,解释方程的具体含义),感受方程与日常生活的联系,体会方程用数学符号抽象地表达了等量关系,对方程的认识从表面趋向本质。
3在“看”“说”和“写”中体会式子
当方程的意义建立后,我让学生观察一组式子判断它们是不是方程,通过判断说明这些式子为什么是“方程”,为什么“不是方程”,体会方程与等式的关系,加深对方程意义的理解。再让学生自己写出一些方程,展示自己写的方法。